Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Genet ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459224

RESUMO

Biallelic pathogenic variants in MADD lead to a very rare neurodevelopmental disorder which is phenotypically pleiotropic grossly ranging from severe neonatal hypotonia, failure to thrive, multiple organ dysfunction, and early lethality to a similar but milder phenotype with better survival. Here, we report 5 patients from 3 unrelated Egyptian families in whom 4 patients showed the severe end of the spectrum displaying neonatal respiratory distress, hypotonia and chronic diarrhea while one patient presented with the mild form displaying moderate intellectual disability and myopathy. In addition, we observed distal arthrogryposis and nonspecific structural brain anomalies in all our patients. Interestingly, cerebellar and brainstem hypoplasia were noted in one patient. Whole exome sequencing identified three novel homozygous variants in the MADD gene: two likely pathogenic [c.4321delC p.(Gln1441ArgfsTer46) and c.2620 C > T p.(Arg874Ter)] and one variant of uncertain significance (c.4307 G > A, p.Arg1436Gln). The variants segregated with the disease in all available family members. Our findings confirm that arthrogryposis, genital, cardiac and structural brain anomalies are manifestations of MADD which expand the spectrum of MADD-related neurodevelopmental disorder. Moreover, they further highlight the convergence of MADD variants on different organ systems leading to complex phenotypes.

2.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405817

RESUMO

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

3.
medRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260255

RESUMO

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

4.
Clin Genet ; 105(1): 92-98, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671596

RESUMO

Pathogenic variants in PNPLA8 have been described either with congenital onset displaying congenital microcephaly, early onset epileptic encephalopathy and early lethality or childhood neurodegeneration with progressive microcephaly. Moreover, a phenotype comprising adulthood onset cerebellar ataxia and peripheral neuropathy was also reported. To our knowledge, only six patients with biallelic variants in PNPLA8 have been reported so far. Here, we report the clinical and molecular characterizations of three additional patients in whom exome sequencing identified a loss of function variant (c.1231C>T, p.Arg411Ter) in Family I and a missense variant (c.1559T>A, p.Val520Asp) in Family II in PNPLA8. Patient 1 presented with the congenital form of the disease while Patients 2 and 3 showed progressive microcephaly, infantile onset seizures, progressive cortical atrophy, white matter loss, bilateral degeneration of basal ganglia, and cystic encephalomalacia. Therefore, our results add the infantile onset as a new distinct phenotype of the disease and suggest that the site of the variant rather than its type is strongly correlated with the disease onset. In addition, these conditions demonstrate some overlapping features representing a spectrum with clinical features always aligning with different age of onset.


Assuntos
Ataxia Cerebelar , Microcefalia , Humanos , Adulto , Criança , Microcefalia/genética , Fenótipo , Ataxia Cerebelar/genética , Mutação de Sentido Incorreto , Gânglios da Base
5.
Mol Syndromol ; 14(6): 523-529, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058759

RESUMO

Introduction: We report on a 4-year-old female patient who presented with severe intellectual disability, autistic features, hyperlaxity of joints, and progressive scoliosis. Whole-exome sequencing identified a de novo missense variant (c.976C>T; p.Arg326Cys) in DDX3X. Case Presentation: The girl was born with congenital diaphragmatic hernia a finding which had not previously been associated with variants in DDX3X. Her brain MRI showed hypogenesis of corpus callosum, ventriculomegaly, frontal and perisylvian polymicrogyria, and hypoplastic pons in addition to Dandy-Walker malformation. Conclusion: Our results confirmed the phenotype and genotype correlation of missense variants and the polymicrogyria. Moreover, it further expands the knowledge of the phenotypic and molecular features of DDX3X-related intellectual disability.

6.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796616

RESUMO

MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.


Assuntos
Encefalopatias , Tumor de Células da Granulosa , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Tumor de Células da Granulosa/genética , Mutação , Aneuploidia
7.
Mol Syndromol ; 14(4): 283-292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37766829

RESUMO

Introduction: The underlying molecular defects of congenital hydrocephalus are heterogeneous and many isolated forms of hydrocephalus remain unsolved at the molecular level. Congenital hydrocephalus in males associated with agenesis of the corpus callosum is a notable characteristic of L1CAM gene which is by far the most common genetic etiology of congenital hydrocephalus. Methods and Results: Sequencing of the L1CAM gene on 25 male patients/fetuses who had been presented with hydrocephalus revealed 6 patients and two fetuses with different hemizygous pathogenic variants. Our study identified 4 novel variants and 4 previously reported. The detection rate was 32%, and all the variants were shown to be maternally inherited. Nonsense variants were detected in 3 patients, while missense variants were detected in 2 patients. Frameshift, silent, and splicing variant, each was detected in 1 patient. The clinical manifestations of the patients are in line with those frequently observed including communicating hydrocephalus and agenesis of the corpus callosum. Moreover, rippled ventricles with subdural collection and asymmetry of ventricles after shunt operation were seen in 1 patient and 2 patients, respectively. In addition, abnormal basal ganglia were found in 4 patients which seems to be an additional distinct new finding. We also describe a patient with novel nonsense variant with the rare association of Hirschsprung's disease. This patient displayed additionally multiple porencephalic cysts and encephalomalacia secondary to hemorrhage due to repeated infections after shunt operation. The patients with the missense variants showed long survival, while those with truncating variants showed poor prognosis. Conclusion: This report adds knowledge of novel pathogenic variants to the L1CAM variant database. Furthermore, we evaluated the clinical and imaging data of these patients.

8.
Clin Genet ; 104(3): 356-364, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37190898

RESUMO

Biallelic variants in PPIL1 have been recently found to cause a very rare type of pontocerebellar hypoplasia and congenital microcephaly in which simplified gyral pattern was not observed in all of the patients. Here, we describe a series of nine patients from eight unrelated Egyptian families in whom whole exome sequencing detected a previously reported homozygous missense variant (c.295G>A, p.Ala99Thr) in PPIL1. Haplotype analysis confirmed that this variant has a founder effect in our population. All our patients displayed early onset drug-resistant epilepsy, profound developmental delay, and visual impairment. Remarkably, they presented with recognizable imaging findings showing profound microcephaly, hypoplastic frontal lobe and posteriorly predominant pachygyria, agenesis of corpus callosum with colpocephaly, and pontocerebellar hypoplasia. In addition, Dandy-Walker malformation was evident in three patients. Interestingly, four of our patients exhibited hematopoietic disorder (44% of cases). We compared the phenotype of our patients with other previously reported PPIL1 patients. Our results reinforce the hypothesis that the alterative splicing of PPIL1 causes a heterogeneous phenotype. Further, we affirm that hematopoietic disorder is a common feature of the condition and underscore the role of major spliceosomes in brain development.


Assuntos
Encefalopatias , Doenças Cerebelares , Síndrome de Dandy-Walker , Microcefalia , Humanos , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Doenças Cerebelares/genética , Peptidilprolil Isomerase
9.
Am J Med Genet A ; 191(8): 2100-2112, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183573

RESUMO

Biallelic variants in CHST3 gene result in congenital dislocation of large joints, club feet, short stature, rhizomelia, kypho-scoliosis, platyspondyly, epiphyseal dysplasia, flared metaphysis, in addition to minor cardiac lesions and hearing loss. Herein, we describe 14 new patients from 11 unrelated Egyptian families with CHST3-related skeletal dysplasia. All patients had spondyloepiphyseal changes that were progressive with age in addition to bifid distal ends of humeri which can be considered a diagnostic key in patients with CHST3 variants. They also shared peculiar facies with broad forehead, broad nasal tip, long philtrum and short neck. Rare unusual associated findings included microdontia, teeth spacing, delayed eruption, prominent angulation of the lumbar-sacral junction and atrial septal defect. Mutational analysis revealed 10 different homozygous CHST3 (NM_004273.5) variants including 7 missense, two frameshift and one nonsense variant. Of them, the c.384_391dup (p.Pro131Argfs*88) was recurrent in two families. Eight of these variants were not described before. Our study presents the largest series of patients with CHST3-related skeletal dysplasia from the same ethnic group. Furthermore, it reinforces that lethal cardiac involvement is a critical clinical finding of the disorder. Therefore, we believe that our study expands the phenotypic and mutational spectrum, and also highlights the importance of performing echocardiography in patients harboring CHST3 variants.


Assuntos
Nanismo , Osteocondrodisplasias , Humanos , Nanismo/diagnóstico por imagem , Nanismo/genética , Homozigoto , Mutação , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética
10.
J Hum Genet ; 68(9): 607-613, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37106064

RESUMO

WLS (Wnt ligand secretion mediator or Wntless) orchestrates the secretion of all Wnt proteins, a family of evolutionary conserved proteins, involved in Wnt signaling pathway that has many essential biological functions including the regulation of development, cell proliferation, migration and apoptosis. Biallelic variants in WLS have recently been described in 10 patients with pleiotropic multiple congenital anomalies (MCA) known as Zaki syndrome. We identified a likely disease-causing variant in WLS (c.1579G>A, p.Gly527Arg) in a boy presented with a broad range of MCA including microcephaly, facial dysmorphism, alopecia, ophthalmologic anomalies, and complete soft tissue syndactyly. These features were reminiscent of Zaki syndrome although variable clinical severity was observed. In a detailed clinical assessment, our patient also displayed microphthalmia, dental anomalies, skeletal dysplasia with spontaneous fractures and Dandy-Walker malformation. As such, we extend the phenotype linked to Zaki syndrome. This study further highlights the importance of a thorough clinical evaluation to delineate the phenotypic spectrum associated with WLS variants and suggests that genotype-phenotype correlations due to variant localization seems likely. However, future work on additional patients and more functional studies may give further insights into genotype-phenotype correlations and the complex function of WLS.


Assuntos
Receptores Acoplados a Proteínas G , Apoptose , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Humanos
11.
Genet Med ; 25(1): 135-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399134

RESUMO

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Assuntos
Braquidactilia , Nanismo , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nanismo/genética , Obesidade/genética , Fenótipo , Proteína-Arginina N-Metiltransferases/genética
12.
J Hum Genet ; 67(11): 669-673, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35896821

RESUMO

Developmental brain malformations are rare but are increasingly reported features of BICD2-related disorders. Here, we report a 2-year old boy with microcephaly, profound delay and partial seizures. His brain MRI showed lissencephaly, hypogenesis of corpus callosum, dysplastic hipocampus and cerebellar hypoplasia. Whole-exome sequencing identified a novel homozygous likely pathogenic variant in the BICD2 gene, c.229 C > T p.(Gln77Ter). This is the first report of lissencephaly and cerebellar hypoplasia seen in a patient with homozygous loss-of-function variant in BICD2 that recapitulated the animal model. Our report supports that BICD2 should be considered in the differential diagnosis for patients with lissencephaly and cerebellar hypoplasia Additional clinical features of BICD2 are likely to emerge with the identification of additional patients.


Assuntos
Lisencefalia , Microcefalia , Malformações do Sistema Nervoso , Animais , Criança , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Cerebelo/patologia , Deficiências do Desenvolvimento/genética , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Microcefalia/patologia
13.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35830857

RESUMO

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
14.
Clin Genet ; 101(5-6): 530-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322404

RESUMO

Homozygous pathogenic variants in WDR45B were first identified in six subjects from three unrelated families with global development delay, refractory seizures, spastic quadriplegia, and brain malformations. Since the initial report in 2018, no further cases have been described. In this report, we present 12 additional individuals from seven unrelated families and their clinical, radiological, and molecular findings. Six different variants in WDR45B were identified, five of which are novel. Microcephaly and global developmental delay were observed in all subjects, and seizures and spastic quadriplegia in most. Common findings on brain imaging include cerebral atrophy, ex vacuo ventricular dilatation, brainstem volume loss, and symmetric under-opercularization. El-Hattab-Alkuraya syndrome is associated with a consistent phenotype characterized by early onset cerebral atrophy resulting in microcephaly, developmental delay, spastic quadriplegia, and seizures. The phenotype appears to be more severe among individuals with loss-of-function variants whereas those with missense variants were less severely affected suggesting a potential genotype-phenotype correlation in this disorder. A brain imaging pattern emerges which is consistent among individuals with loss-of-function variants and could potentially alert the neuroradiologists or clinician to consider WDR45B-related El-Hattab-Alkuraya syndrome.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Atrofia , Doenças Ósseas Metabólicas , Defeitos Congênitos da Glicosilação , Homozigoto , Humanos , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Microcefalia/patologia , Linhagem , Fenótipo , Quadriplegia/genética , Convulsões/diagnóstico por imagem , Convulsões/genética
15.
Mol Syndromol ; 13(5): 389-396, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36588752

RESUMO

Introduction: Pathogenic variants in the PIEZO family member 2 (PIEZO2) gene are known to cause Gordon syndrome (GS), Marden-Walker syndrome (MWS), and distal arthrogryposis type 5 (DA5). Out of these, MWS has a recognizable phenotype that can be discerned easily, but the distinction between GS and DA5 is less evident. Few children with pathogenic PIEZO2 variants have been reported to show posterior fossa anomalies. Methods and Results: By candidate gene targeting guided by proper clinical evaluation and neuroimaging findings, a patient with classic MWS harboring a de novo novel variant (c.8237G>A, p.W2746*) in the C-terminal region of PIEZO2 was identified. In addition, another girl with the typical clinical features of GS is also described carrying the most prevalent reported variant (c.8057G>A, p.R2686H) in PIEZO2. The brain MRI of the 2 patients showed Dandy-Walker malformation (DWM). Diffusion tensor imaging visualized anteroposterior and downward aligned thin middle cerebellar peduncle. The association of DWM with arthrogryposis in the presence of PIEZO2 variants remains quite interesting and provides more evidence that PIEZO2 plays a role in the development of hindbrain although the underlying mechanism remains unclear. Moreover, the 2 girls had distinct foot patterning in the form of shortening of the first and fifth toes. Conclusion: Phenotype analysis and a comprehensive review of the literature strongly support the previously published data and corroborate the evidence that heterozygous PIEZO2-related disorders represent a continuum with overlapping phenotypic features.

16.
Acta Neuropathol ; 143(2): 245-262, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34918187

RESUMO

Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.


Assuntos
Doenças Neurodegenerativas/genética , Núcleosídeo-Fosfato Quinase/genética , Animais , Feminino , Humanos , Masculino , Microcefalia/genética , Mutação , Peixe-Zebra
17.
Am J Med Genet A ; 188(3): 735-750, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34816580

RESUMO

Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Transtornos do Neurodesenvolvimento , Animais , Calpaína/genética , Egito , Humanos , Lactente , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sequenciamento do Exoma
18.
Am J Med Genet A ; 188(2): 648-657, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761517

RESUMO

SMG8 (MIM *617315) is a regulatory subunit involved in nonsense-mediated mRNA decay (NMD), a cellular protective pathway that regulates mRNA transcription, transcript stability, and degrades transcripts containing premature stop codons. SMG8 binds SMG9 and SMG1 to form the SMG1C complex and inhibit the kinase activity of SMG1. Biallelic deleterious variants in SMG9 are known to cause a heart and brain malformation syndrome (HBMS; MIM #616920), whereas biallelic deleterious variants in SMG8 were recently described to cause a novel neurodevelopmental disorder (NDD) with dysmorphic facies and cataracts, now defined as Alzahrani-Kuwahara syndrome (ALKUS: MIM #619268). Only eight subjects from four families with ALKUS have been described to date. Through research reanalysis of a nondiagnostic clinical exome, we identified a subject from a fifth unrelated family with a homozygous deleterious variant in SMG8 and features consistent with ALKUS. Interestingly, the subject also had unilateral microphthalmia, a clinical feature that has been described in SMG9-related disorder. Our study expands the phenotypic spectrum of SMG8-related disorder, demonstrates an overlapping phenotype between SMG8- and SMG9-related rare disease traits, provides further evidence for the SMG8 and SMG9 protein interactions, and highlights the importance of revisiting nondiagnostic exome data to identify and affirm emerging novel genes for rare disease traits.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Degradação do RNAm Mediada por Códon sem Sentido , Alelos , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fenótipo , Fosforilação
19.
Brain ; 145(4): 1551-1563, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34694367

RESUMO

The major spliceosome mediates pre-mRNA splicing by recognizing the highly conserved sequences at the 5' and 3' splice sites and the branch point. More than 150 proteins participate in the splicing process and are organized in the spliceosomal A, B, and C complexes. FRA10AC1 is a peripheral protein of the spliceosomal C complex and its ortholog in the green alga facilitates recognition or interaction with splice sites. We identified biallelic pathogenic variants in FRA10AC1 in five individuals from three consanguineous families. The two unrelated Patients 1 and 2 with loss-of-function variants showed developmental delay, intellectual disability, and no speech, while three siblings with the c.494_496delAAG (p.Glu165del) variant had borderline to mild intellectual disability. All patients had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism. FRA10AC1 transcripts and proteins were drastically reduced or absent in fibroblasts of Patients 1 and 2. In a heterologous expression system, the p.Glu165del variant impacts intrinsic stability of FRA10AC1 but does not affect its nuclear localization. By co-immunoprecipitation, we found ectopically expressed HA-FRA10AC1 in complex with endogenous DGCR14, another component of the spliceosomal C complex, while the splice factors CHERP, NKAP, RED, and SF3B2 could not be co-immunoprecipitated. Using an in vitro splicing reporter assay, we did not obtain evidence for FRA10AC1 deficiency to suppress missplicing events caused by mutations in the highly conserved dinucleotides of 5' and 3' splice sites in an in vitro splicing assay in patient-derived fibroblasts. Our data highlight the importance of specific peripheral spliceosomal C complex proteins for neurodevelopment. It remains possible that FRA10AC1 may have other and/or additional cellular functions, such as coupling of transcription and splicing reactions.


Assuntos
Transtornos do Crescimento , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Proteínas Nucleares , Proteínas de Ligação a DNA/genética , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Sítios de Splice de RNA , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética
20.
J Hum Genet ; 67(1): 55-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34354232

RESUMO

Biallelic pathogenic variants of OTUD6B have recently been described to cause intellectual disability (ID) with seizures. Here, we report the clinical and molecular characterization of five additional patients (from two unrelated Egyptian families) with ID due to homozygous OTUD6B variants. In Family I, the two affected brothers had additional retinal degeneration, a symptom not yet reported in OTUD6B-related ID. Whole-exome sequencing (WES) identified a novel nonsense variant in OTUD6B (c.271C>T, p.(Gln91Ter)), but also a nonsense variant in RP1L1 (c.5959C>T, p.(Gln1987Ter)), all in homozygous state. Biallelic pathogenic variants in RP1L1 cause autosomal recessive retinitis pigmentosa type 88 (RP88). Thus, RP1L1 dysfunction likely accounts for the visual phenotype in this family with two simultaneous autosomal recessive disorders. In Family II, targeted sequencing revealed a novel homozygous missense variant (c.767G>T, p.(Gly256Val)), confirming the clinically suspected OTUD6B-related ID. Consistent with the clinical variability in previously reported OTUD6B patients, our patients showed inter- and intrafamilial differences with regard to the clinical and brain imaging findings. Interestingly, various orodental features were present including macrodontia, dental crowding, abnormally shaped teeth, and thick alveolar ridges. Broad distal phalanges (especially the thumbs and halluces) with prominent interphalangeal joints and fetal pads were recognized in all patients and hence considered pathognomonic. Our study extends the spectrum of the OTUD6B-associated phenotype. Retinal degeneration, albeit present in both patients from Family I, was shown to be unrelated to OTUD6B, demonstrating the need for in-depth analysis of WES data in consanguineous families to uncover simultaneous autosomal recessive disorders.


Assuntos
Endopeptidases/genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Fenótipo , Alelos , Estudos de Associação Genética , Genótipo , Humanos , Degeneração Retiniana/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...